
CIO(1) CIO(1)

NAME

cio - a pair of RCS user interface programs

SYNOPSIS

cii [cii options] [ci options] [filename ...] [dirname ...]

coo [coo options] [co options] [filename ...] [dirname ...]

DESCRIPTION

Cii and coo are two programs that will provide an interface to the RCS programs ci and co. They add:

Recursively check in/out directory structures

Store RCS files in a separate directory structure

Default stores only ASCII files, enabling program to be run on directories with both source and binary

Command line options include:

-A All files. Forces a "cp" of files that are non-ASCII.

-H Insert RCS header. If a valid RCS header not found, a template header will be inserted at the begin-

ning of the file being checked in.

-N No operation. Causes cii or coo to display the action that would have resulted. Nothing is executed.

-R Recursively walk down directories to check in/out

-T Force title request at start of program (Default only gets title when required.)

-U Update source directory. During a check-in, a copy is made to the directory structure specified by

$RCSSRC. If $RCSSRC is not defined, $HOME will be used instead.

-V Verbose. Be real talkative about the work being done.

[all ci/co options]

Passes all other options on to ci or co.

filename

Optional file names. If not provided, the cii program will take all files in the current directory, or coo

will take all files saved in the RCS directory. (Binary files only if -A was also specified.)

dirname

Both programs will take a directory name as an argument, however: the -R option must also be speci-

fied for it to work.

ENVIRONMENT

RCSDIR

If defined, names a path that will be used to store the RCS files. Default is $HOME/RCS. Final path

is computed by removing $HOME and/or $RCSWORK from current path.

RCSWORK

If defined, an alternate prefix for current working directory. Allows having multiple directory struc-

tures with different prefix’s.

HOME

Must be defined as the users home directory.

1

CIO(1) CIO(1)

RCSSRC

If defined and -U flag is specified, during a cii procedure, a copy of what’s being checked in will be

made in the directory structure starting at $RCSSRC. If not specified, cii uses $HOME instead.

RCSHEAD

If -H flag is specified, cii finds template header from $RCSHEAD directory.

SAMPLES

A user with a home directory of /usr/bog, has a directory structure called sample/arix. He want’s to store

all of the files in /usr/bog/sample/arix into the RCS system. If neither RCSDIR or RCSWORK is defined,

the RCS path defaults to his home directory, followed by RCS, followed by the current path. So:

Current directory : /usr/bog/sample/arix

Home directory : /usr/bog

RCSDIR :

RCSWORK :

RCSSRC :

Final RCS storage : /usr/bog/RCS/sample/arix

Final source storage: /usr/bog/sample/arix

The net effect of this command is to create the RCS directory, then to duplicate the directory structure in a

defined place. In this case, since the RCSDIR was not defined, it defaulted to the users home directory.

It is not necessary to build the directories in RCS, the program will build all necessary directories (Includ-

ing the RCS dir, if needed).

Another example: All RCS files should reside in /usr/RCS, so the above example turns into:

Current directory : /usr/bog/sample/arix

Home directory : /usr/bog

RCSDIR : /usr/RCS

RCSWORK :

RCSSRC :

Final RCS storage : /usr/RCS/sample/arix

Final source storage: /usr/bog/sample/arix

Here is an example showing use of the RCSWORK variable. Some systems may have more than one per-

son working on file. In this case, the path names will have to be similar, but only to a point. Example,

/usr/tog is also working in a directory, called sample/arix. His system would look like:

Current directory : /usr/tog/sample/arix

Home directory : /usr/tog

RCSDIR : /usr/RCS

RCSWORK :

RCSSRC :

Final RCS storage : /usr/RCS/sample/arix

Final source storage: /usr/tog/sample/arix

Note that the RCS dir is the same for him. Now, let’s take a user who has decided to work somewhere other

than his home directory.

Current directory : /usr/src/rog/sample/arix

Home directory : /usr/rog

RCSDIR : /usr/RCS

2

CIO(1) CIO(1)

RCSWORK : /usr/src/rog

RCSSRC :

Final RCS storage : /usr/RCS/sample/arix

Final source storage: /usr/rog/sample/arix

If RCSSRC is specified to keep the current source (very useful to when one wants to browse through the

current source files) in a directory other than his HOME.

Current directory : /usr/src/rog/sample/arix

Home directory : /usr/rog

RCSDIR : /usr/RCS

RCSWORK : /usr/src/rog

RCSSRC : /usr/group

Final RCS storage : /usr/RCS/sample/arix

Final source storage: /usr/group/sample/arix

The RCSWORK variable was removed from the current path, before the directory structure was defined.

Thus, it is possible to be working in just about anywhere on the system and still use the same directory

structure and RCS files.

If you want to recover a directory (or multiple ones) into a new working directory, simply create whatever

part of the path you need, set the RCSWORK variable to be the first part of the path, and type "coo [-R]".

Example: A new user (/usr/log) has decided to examine the sample/* files. Here are the steps:

Current working directory: /usr/llog

mkdir sample

chdir sample

RCSDIR=/usr/RCS export RCSDIR

RCSWORK=/usr/log export RCSWORK

This is the final setup:

Current directory: /usr/log/sample

Home directory : /usr/llog

RCSDIR : /usr/RCS

RCSWORK : /usr/log

Final RCS storage: /usr/RCS/sample/arix

SECURITY

Secure archives

Cii/coo will also secure archives. Changing ownership of the cii or coo program to root, and making it suid

will allow private archives. With this option, an additional environment variable is searched for:

"RCSOWN". If this is not found, the default name "rcsfiles" is used in the following step.

The user name is searched for in the /etc/password. If not found, the real users UID will be used instead.

In this fashion, the ci and co programs will be called with the appropriate uses abilities to create directories,

and save files. Only the user who owns the RCS files has write ability without going through the cii or coo

programs.

The only condition that allows the program to remain in the root owned mode is to have the rcsfiles have a

root account. Otherwise, it moves out of the root as soon as it’s found the user.

3

CIO(1) CIO(1)

OTHER NOTES

Cii will not unlink files not owned by the user who is checking in the files. This prevents users from delet-

ing files not owned by them, possibly causing harm. (I.E., checking in the /etc/passwd file.) coo does not

run as root, it runs as the real user. Hence, it is not possible for a user to overwrite files or directories they

normally do not have write access to.

Cii/coo only will allow extraction of code by the users in the same group as the user who checked the

sources in.

We highly suggest that you exmine the code in the security area if you plan on running it secure. We’v e

tried it secure, and it seems to work. However... We are by no means the "great U*IX hackers", so there is

probably some way to run the program that we missed that can allow others access to restricted files.

Check it out! If you *do* find something we missed, please send us mail.

EDITOR COMMANDS

The input editor for the logfile entries and title file entries have tilde (˜) command options available. These

are:

? - Print a help menu.

. - End of input.

! - Inv oke a user shell. Note: Shell is invoked

as the real user-id; No arguments are passed

or allowed. The ENV variable "SHELL" is

searched for, if not present /bin/sh will be

invoked.

e - Edit the message using a default editor.

Searches for the ENV variable VISUAL or

EDITOR. If not found, /usr/bin/vi is the

default editor.

p - Print message buffer. Displays the current

contents of the message buffer.

r - Read in a file. Requires file name as an

argument. Named file will be appended to

current buffer.

w - Write message to a file. Requires file name

as an argument. Appends message buffer to

file name given. If file does not exist,

creates file. Does not create directories.

AUTHORS

Jason P. Winters (jason@grinch.uucp) and Craig J. Kim (cjkim@aeras.uucp)

FILES

The following template files can be created to insert RCS header into source files during cii process with -H

option. The location for these files is specified by setting $RCSHEAD environment variable. If

$RCSHEAD is not set, $HOME will be used instead. File types are determined by examining the content

via file(1) program and by file extensions (e.g. .c for C programs, .mk for makefiles, .1 for nroff, and .s for

assembly).

.rcshead - default template

.rcshead.c - C program template

.rcshead.s - Assembly source template

.rcshead.sh - Shell script template

.rcshead.f - Fortran program template

4

CIO(1) CIO(1)

.rcshead.mk - makefile template

.rcshead.h - C header file template

.rcshead.roff - nroff, troff, man file template

DIAGNOSTICS

Linking cio to ciitest or cootest will cause the program to parse the directory paths, and print out the final

pathnames. Nothing else happens. Using the -N option will cause the program to execute as normal,

except that no files or directories will be created.

BUGS

On some systems, the Control-D as end of input to a log or title entry can cause problems with STDIN.

We’v e added a call to clearerr(), but have not tested if that fixes it. (It doesn’t break it, so...)

Any other bugs we would like to hear about. We might even make a new release, if people actually use

this. :)

AUTHOR

Jason Winters, grinch!jason

5

